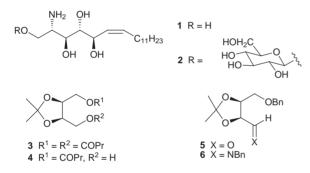
Highly stereocontrolled access to a tetrahydroxy long chain base using *anti*-selective additions

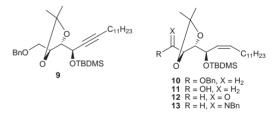

Makoto Shimizu,* Manabu Kawamoto and Yasuki Niwa

Department of Chemistry for Materials, Mie University, Tsu, Mie 514-8507, Japan. E-mail: mshimizu@chem.mie-u.ac.jp

Received (in Cambridge, UK) 25th March 1999, Accepted 12th May 1999

Complete diastereostereoselection was attained for the addition of acetylide and benzyloxymethyl anions to a chiral aldehyde and an imine derived from *meso*-tartaric acid, leading to a facile synthesis of (2S,3S,4R,5R,6Z)-2-amino-1,3,4,5-tetrahydroxyoctadecene as its pentaacetyl derivative in enantiomerically pure form.

Increasing interest in the field of cerebrosides prompted us to investigate an easy access to this class of compounds in a highly stereocontrolled fashion.¹ In conjunction with the amino polyols which recently have attracted the interest of chemists, several 2-amino-1,3,4,5-tetrahydroxyoctadecene derivatives have been found in bovine spinal cords and human brains as well as in green and red algae.² Among them, (2S,3S,4R,5R,6Z)-2-amino-1,3,4,5-tetrahydroxyoctadecene **1**, the long-chain base



(LCB) part of a new cerebroside 2, was isolated from the latex of Eupohorbia characias L and its structure has been elucidated.3 The biological importance of such cerebrosides, especially the imparted bioactivities, makes this compound a useful target for synthesis. To the best of our knowledge, however, only two approaches to tetrahydroxy-LCB 1 have been reported; one starting from D-mannose^{4a} and the other from Dglutamic acid.4b There still appear to be important problems of stereocontrol,⁵ and we focused on the topic of stereocontrol in the addition of nucleophiles to chiral aldehydes and imines to find a solution to these problems. We have recently reported that complete anti-stereocontrol has been attained in an addition of nucleophiles to the chiral aldehyde derived from L-serine, leading to a short synthesis of (2S,3S,4R)-phytosphingosine,⁶ while syn-selective addition of nucleophiles has also been successfully used for the synthesis of deoxybiotin.7 In these studies, a non-chelation- or chelation-type transition state was thought to be crucial for such complete anti- or syn-stereoselection, respectively.^{5–7} For the synthesis of tetrahydroxy-LCB 1, the anti-stereocontrolled construction of the contiguous asymmetric carbons is likely to be difficult, as can be seen from its structure. Here we describe a new stereocontrolled approach to tetrahydroxy-LCB 1 using a tandem *anti*-selective addition of nucleophiles to the chiral aldehyde 5 and the imine 6 derived from meso-tartaric acid.

The chiral aldehyde 5^8 was prepared in good overall yield in enantiomerically pure form starting from *meso*-tartaric acid using lipase-mediated desymmetrization as a crucial step. *meso*-Tartaric acid was converted into dibutyrate 3 via diethyl ester formation (cat. TsOH, EtOH) and acetonization (cat. TsOH, 2,2-dimethoxypropane, benzene, 94% yield for two steps) followed by reduction (LiAlH₄, THF, 84%) and bis-acylation (*n*-butyryl chloride, Et₃N, CH₂Cl₂, 75%). The dibutyrate **3** was treated with Lipase Amano PS in phosphate buffer–acetone at room temperature for 5 h to give the mono-ester **4** in 93% yield with >99% ee.⁹ The protection of the hydroxy functionality with an ethoxyethyl group (cat. PPTS, ethyl vinyl ether, CH₂Cl₂) was followed by hydrolysis of the ester moiety (K₂CO₃, MeOH). The benzyl etherification of the resulting ethoxyethyl group (cat. PPTS, PrOH) gave the alcohol, which was oxidized using the Swern oxidation to give the aldehyde **5** in enantiomerically pure form in 66% overall yield from the mono-ester **4**.[†]

As shown in Table 1, the *anti*-selective addition of acetylide to aldehyde **5** was conducted with triisopropoxytitanium acetylide **7** as described earlier^{7,10} to give the desired adduct *anti*-**8** in 98% yield as single diastereomer (entry 1),‡ whereas modest *syn*-selectivity was observed with halomagnesium, lithium, or dichlorocerium acetylide (entries 2–5).

The *anti*-propargyl alcohol *anti*-**8** was then transformed into the imine **13** possessing the functionalities necessary for the synthesis of tetrahydroxy-LCB **1** *via* the following sequences: protection of the hydroxy group with TBDMS (TBDMSCI, imidazole, DMF, **9**: 95%); partial reduction of the triple bond

under the Lindlar conditions [H₂, Pd/BaSO₄, quinoline, MeOH, **10**: 99%, (Z : E = > 99: < 1)]; removal of the benzyl protecting group (Ca, liq. NH₃, **11**, 86%); Swern oxidation of the hydroxy group (oxalyl chloride, DMSO, Et₃N, CH₂Cl₂, **12**: 93%); benzylimination (BnNH₂, Et₂O, **13**: 100%).

Table 1 Addition of dodecylacetylide to aldehyde 5

[M]C 5 7 THF	BnO on anti-8	O, OH	+ BnO O syn-8	о стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани Стани С Стани С С С С С С С С С С С С С С С С С С С
Entry	[M]	<i>T</i> /°C	Yield (%) ^a	anti:syn ^b
1	Ti(OPri)3	-78-0	98	>99:<1
2	MgBr	-78-0	43	40:60
3	MgCl	-50-0	66	24:76
4	Li	-78-0	43	27:73
5	CeCl ₂	-78-rt	48	23:77
^a Isolated yie	elds. b Determin	ned by 1H an	d 13C NMR anal	yses.

	6 Nucleophile Bno Nu + Bno Nu NHBn Nu + Bno Nu							
Entry	Nucleophile	Solvent	anti-14 T/°C	syn-14 Additive (equiv)	Yield (%) ^a	anti:syn ^b		
1	Li-dithianide	THF	-50-rt	none	33	<1:>99		
2	Li-dithianide	THF	-50-0	BF ₃ •Et ₂ O (4.0)	78	>99: <1		
3	LiC=CTMS	THF	-78-rt	none	17	<1:>99		
4	LiC=CTMS	THF	-78-0	BF ₃ •Et ₂ O (4.0)	55	>99: <1		
5	2-FurylLi	THF	-78-rt	none	16	<1:>99		
6	2-FurylLi	THF	-78-rt	$BF_3 \bullet Et_2O$ (4.0)	34	>99: <1		
7	TMSČN	CH ₂ Cl ₂	-78-rt	$BF_{3} \bullet Et_{2}O(4.0)$	48	88:12		
/		THF	-78-0	$BF_{3} \cdot Et_{2}O(4.0)$	78	>99: <1		

For the introduction of a hydroxymethyl moiety into the imine 13, three types of nucleophiles were investigated for the addition reaction in terms of diastereoselectivity, in which the imine 6 was used as a model substrate, and Table 2 summarizes the results.

As shown in Table 2, lithium dithianide in THF added to the imine 6 to give syn-14 (Nu = 1,3-dithiane) as the sole product, whereas reversal of the diastereoselectivity was observed in the same reaction conducted in the presence of an excess BF₃•Et₂O, giving anti-14 stereospecifically (entries 1 and 2).7 Similar trends of reversal of the diastereoselectivity were observed in the cases with the lithium acetylide and 2-furyllithium (entries 3-6). TMSCN in the presence of BF₃•Et₂O¹¹ also effected the predominant formation of the *anti*-adduct *anti*-14 (Nu = CN) (entry 7). For the preparation of tetrahydroxy-LCB, the use of a hydroxymethyl anion equivalent was more preferable in terms of functional group manipulation and, therefore, benzyloxymethyllithium¹² was used for the addition in the presence of $BF_3 \bullet Et_2O$ to give *anti*-14 (Nu = BnOCH₂) as the sole product in good yield (entry 8). This high selectivity is most probably explained in terms of non-chelation (for anti-adduct) and chelation transition states (for syn-adduct).

Thus, addition of benzyloxymethyllithium to the imine 13 was conducted as in the case with 6 in the presence of BF_{3} ·Et₂O to give, as expected, the desired *anti*-adduct 15 exclusively in

32% yield.§ Deprotection of the benzyl group was carried out with Na-NH₃, and subsequent hydrolysis with TFA followed by acetylation gave the pentaacetyl derivative **16** of tetrahydroxy-LCB **1** in 11% overall yield from **15**.¶

In conclusion, the present synthesis using a tandem *anti*addition reaction to the chiral aldehyde and the imine realizes a rapid access to biologically important molecules in a highly stereocontrolled fashion. Since the level of the diastereoselectivity attained on the addition of nucleophiles to α hydroxy aldehyde and imine was extremely high, this procedure may be applied to the syntheses of a variety of amino polyols of biological importance in a stereocontrolled manner.

Notes and references

[†] The enantiomeric purity was determined by HPLC using a chiral stationary column (Daicel OJ).

 \ddagger To a solution of tridecyne (1.63 g, 647 mmol) in 70 ml of THF was added BuLi (1.68 M in n-hexane, 4.62 ml, 7.76 mmol) at -78 °C, and the mixture

was stirred at -78 °C for 30 min. A solution of CITi(OPrⁱ)₃ (1.0 M in nhexane, 7.8 ml, 7.76 mmol) was added to the mixture at -78 °C and it was allowed to stand at -60 °C for 1 h. A solution of **5** (647 mg, 2.58 mmol) in THF (35 ml) was added to the resulting mixture at -78 °C, and the mixture was stirred at that temperature for 2 h. After usual work-up, the crude oil was purified by flash silica gel chromatography to give the propargyl alcohol *anti*-**8** (1.09 g, 98%) as a colorless oil.

§ To a solution of SnCl₂ (214 mg, 1.15 mmol) in THF (2 ml) was added a solution of LiBr (100 mg, 1.15 mmol) in THF (2 ml) and the mixture was stirred at room temperature for 30 min. A solution of BnOCH₂Cl (180 mg, 1.15 mmol) in THF (2 ml) was added to the resulting mixture, to which was added BuLi (1.68 M in n-hexane, 2.74 ml, 4.61 mmol) at -78 °C, and stirred for 1 h at that temperature. BF₃•Et₂O (164 mg, 1.152 mmol) was added to the mixture and after 10 min a solution of **13** prepared *in situ* from **12** (131 mg, 0.288 mmol) and BnNH₂ (32.4 mg, 0.302 mmol) in THF (2 ml) was added to -78 °C, and the whole mixture was gradually warmed to 0 °C. After usual work-up, the crude oil was purified on preoperative TLC to give **15** (60.7 mg, 32%) as a colorless oil.

¶ The spectral properties are identical with the reported data (ref. 4).

- Y. Hannun and R. M. Bell, *Science*, 1989, 243; C. Djerassi and W. K. Lam, *Acc. Chem. Res.*, 1991, 24, 69; A. Olivera and S. Spiegel, *Nature*, 1993, 365, 557.
- 2 H. S. Garg, M. Sharma, D. S. Bhakuni, B. N. Paramanik and A. K. Bose, *Tetrahedron Lett.*, 1992, **33**, 1641; C. B. Rao and C. Satyanarayana, *Indian J. Chem., Sect. B*, 1994, **33B**, 97.
- 3 G. Falsone, F. Cateni, F. Katusian, H. Wagner, O. Seligmann, G. Pellizer and F. Asaro, Z. Naturforsch, Teil B: Chem. Sci., 1993, 48, 1121; G. Falsone, F. Cateni, G. Visintin, V. Lucchini, H. Wagner and O. Seligmann, Farmaco, 1994, 49, 167.
- 4 (a) Y.-L. Li and Y.-L. Wu, *Tetrahedron Lett.*, 1995, **36**, 3875; (b) H. Yoda, T. Oguchi and K. Takabe, *Tetrahedron: Asymmetry*, 1996, **7**, 2113.
- 5 For reviews, see, J. Jurczak and A. Golebiowski, *Chem. Rev.*, 1989, **89**, 149; *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 1 and references cited therein; A. Dondoni and D. Perrone, *Aldrichim. Acta*, 1997, **30**, 35.
- 6 M. Shimizu, I. Wakioka and T. Fujisawa, *Tetrahedron Lett.*, 1997, 38, 6027.
- 7 T. Fujisawa, M. Nagai, Y. Koike and M. Shimizu, J. Org. Chem., 1994, 59, 5865.
- 8 A. Dondoni and P. Merino, Synthesis, 1992, 196; P. Munier, A. Krusinski, D. Picq and D. Anker, Tetrahedron, 1995, 51, 1229.
- 9 For lipase-mediated kinetic resolution of this kind of diol, see, M. Pottie, V. der Eycken and M. Vandewalle, *Tetrahedron: Asymmetry*, 1991, 2, 329; H. J. Bestmann and L. Bauriegel, *Tetrahedron Lett.*, 1995, 36, 853.
- 10 F. Tabusa, T. Yamada, K. Suzuki and T. Mukaiyama, *Chem. Lett.*, 1984, 405.
- 11 D. A. Evans, G. L. Carroll and L. K. Truesdale, J. Org. Chem., 1974, 39, 914 and references cited therein.
- 12 E. J. Corey and T. M. Eckrich, *Tetrahedron Lett.*, 1983, 24, 3163; W. C. Still, J. Am. Chem. Soc., 1978, 100, 1481.

Communication 9/02386K

1152 Chem. Commun., 1999, 1151–1152